Processing math: 0%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 67024

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Точки M и N – середины сторон AB и AC треугольника ABC. Касательная \ell к описанной окружности треугольника ABC в точке A пересекает прямую BC в точке K. Докажите, что описанная окружность треугольника MKN касается \ell.
Прислать комментарий     Решение


Задача 67025

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Векторы помогают решить задачу ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8,9,10,11

Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки?
Прислать комментарий     Решение


Задача 67015

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 7,8,9,10

У входа на рынок есть двухчашечные весы без гирек, которыми каждый может воспользоваться по 2 раза в день. У торговца Александра есть 3 неотличимые внешне монеты весом 9, 10 и 11 грамм.

— Как жаль, что я не могу за 2 взвешивания разобраться, какая из моих монет сколько весит!

— Да! — поддакнул его сосед Борис. — У меня совершенно та же ситуация — тоже 3 неотличимые на вид монеты весом 9, 10 и 11 грамм!

Докажите, что если они объединят усилия, то за отведённые им 4 взвешивания определят веса всех шести монет.
Прислать комментарий     Решение


Задача 67029

Темы:   [ Построения (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

В декартовой системе координат (с одинаковым масштабом по осям x и y) нарисовали график показательной функции y=3^x. Затем ось y и все отметки на оси x стёрли. Остались лишь график функции и ось x без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось y?
Прислать комментарий     Решение


Задача 67020

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Коллекция Саши состоит из монет и наклеек, причём монет меньше, чем наклеек, но хотя бы одна есть. Саша выбрал некоторое положительное число t>1 (не обязательно целое). Если он увеличит количество монет в t раз, не меняя количества наклеек, то в его коллекции будет 100 предметов. Если вместо этого он увеличит количество наклеек в t раз, не меняя количества монет, то у него будет 101 предмет. Сколько наклеек могло быть у Саши? Найдите все возможные ответы и докажите, что других нет.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .