ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 67476  (#1)

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10,11

В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?
Прислать комментарий     Решение


Задача 67480  (#2)

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Автор: Янжинов С.

У двух многочленов с вещественными коэффициентами старшие коэффициенты равны 1. У каждого многочлена степень нечётна и равна числу его различных вещественных корней. Произведение значений первого многочлена в корнях второго равно 2024. Найдите произведение значений второго многочлена в корнях первого.
Прислать комментарий     Решение


Задача 67481  (#3)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Последовательности (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В ряд записаны $5$ натуральных чисел. Каждое из них, кроме первого, — наименьшее натуральное число, на которое не делится предыдущее. Могут ли все пять чисел быть различными?
Прислать комментарий     Решение


Задача 67482  (#4)

Темы:   [ Вспомогательные подобные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

В равностороннем треугольнике $ABC$ проведены отрезки $ED$ и $GF$, так что образовались два равносторонних треугольника $ADE$ и $GFC$ со сторонами 1 и 100 (точки $E$ и $G$ лежат на стороне $AC$). Отрезки $EF$ и $DG$ пересекаются в точке $O$, причём угол $EOG$ равен $120^\circ$. Чему равна сторона треугольника $ABC$?

Прислать комментарий     Решение

Задача 67483  (#5)

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 8,9,10,11

Имеются чашечные весы без гирь и две кучи камней неизвестных масс, по 10 камней в каждой куче. Разрешается проводить сколько угодно взвешиваний, но на каждую чашу помещается не более 9 камней. Всегда ли можно узнать, какая из куч тяжелее, или установить равенство их масс?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .