ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга? Какое максимальное число шашек можно расставить на доске 8×8 так, чтобы каждая была под боем? |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 207]
Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что KL || O1O2.
В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
В остроугольном треугольнике ABC проведена высота CH. Оказалось, что AH = BC.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 207]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке