|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]
Найдите периметр треугольника ABC, если известны координаты его вершин A(–3, 5), B(3, –3) и точки M(6, 1), являющейся серединой стороны BC.
Найдите периметр треугольника KLM, если известны координаты его вершин K(–4, –3), L(2, 5) и точки P(5, 1), являющейся серединой стороны LM.
Найдите длину хорды, которую на прямой y = 3x высекает окружность (x + 1)2 + (y - 2)2 = 25.
Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.
Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|