ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]      



Задача 108524

Темы:   [ Метод координат на плоскости ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Найдите периметр треугольника ABC, если известны координаты его вершин  A(–3, 5),  B(3, –3)  и точки  M(6, 1),  являющейся серединой стороны BC.

Прислать комментарий     Решение

Задача 108525

Темы:   [ Метод координат на плоскости ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Найдите периметр треугольника KLM, если известны координаты его вершин  K(–4, –3),  L(2, 5)  и точки  P(5, 1),  являющейся серединой стороны LM.

Прислать комментарий     Решение

Задача 108539

Темы:   [ Метод координат на плоскости ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Найдите длину хорды, которую на прямой y = 3x высекает окружность (x + 1)2 + (y - 2)2 = 25.

Прислать комментарий     Решение


Задача 102706

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9,10

Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

Прислать комментарий     Решение


Задача 102707

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .