ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В треугольнике ABC биссектрисы углов при вершинах A и C пересекаются в точке D.
Найдите радиус описанной около треугольника ABC окружности, если радиус
окружности с центром в точке O, описанной около треугольника ADC, равен R = 6, и
|
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 463]
Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если AB = BC = 2, ∠B = 2 arcsin
Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если KL = LM =
В треугольнике ABC точка D лежит на стороне AC, причём AD = 2DC. Точка E лежит на стороне BC. Площадь треугольника ABD равна 3, площадь треугольника AED равна 1. Отрезки AE и BD пересекаются в точке O. Найдите отношение площадей треугольников ABO и OED.
Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.
В параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём MC = 4. N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь треугольника BNM.
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 463]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке