Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

Вниз   Решение


В блицтурнире принимали участие  2n + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее n игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?

ВверхВниз   Решение


Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 64990

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 2
Классы: 7,8,9

Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

Прислать комментарий     Решение

Задача 88298

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 2
Классы: 7,8

Решить уравнение  x8 + 4x4 + x² + 1 = 0.

Прислать комментарий     Решение

Задача 79467

Темы:   [ Уравнения высших степеней (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8

Найти все значения x и y, удовлетворяющие равенству   xy + 1 = x + y.

Прислать комментарий     Решение

Задача 65917

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 10,11

Имеет ли отрицательные корни уравнение   x4 – 4x³ – 6x² – 3x + 9 = 0?

Прислать комментарий     Решение

Задача 66360

Темы:   [ Уравнения высших степеней (прочее) ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3
Классы: 9,10,11

Число p – корень кубического уравнения  x³ + x – 3 = 0.
Придумайте кубическое уравнение с целыми коэффициентами, корнем которого будет число p².

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .