Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В правильной усечённой четырёхугольной пирамиде ABCDA1B1C1D1 отношение сторон AB и A1B1 нижнего и верхнего оснований равно m<1 . Параллельно диагонали B1D проведены плоскость через ребро AB и плоскость через ребро A1D1 ; параллельно диагонали BD1 проведены плоскость через ребро CD и плоскость через ребро B1C1 . Найдите отношение объёма треугольной пирамиды, ограниченной этими четырьмя плоскостями, к объёму усечённой пирамиды.

Вниз   Решение


Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что  A'K = B'K.
Докажите, что и отрезок C'K имеет ту же длину.

ВверхВниз   Решение


На стороне AC треугольника ABC взята точка E. Через точку E проведены прямая DE параллельно стороне BC и прямая EF параллельно стороне AB (D и E — точки соответственно на этих сторонах). Докажите, что SBDEF = 2$ \sqrt{S_{ADE}\cdot S_{EFC}}$.

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 294]      



Задача 57016

Темы:   [ Описанные четырехугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены отрезки PQ и RS, параллельные стороне AC, и отрезок BM (рис.). Трапеции RPKL и MLSC описанные. Докажите, что трапеция APQC тоже описанная.


Прислать комментарий     Решение

Задача 102441

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

Пусть M – точка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны AB, AD и BC равны между собой.
Найдите угол CMD, если известно, что  DM = MC,  а  ∠CAB ≠ ∠DBA.

Прислать комментарий     Решение

Задача 102442

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC равные стороны AB и CB продолжены за точку B и на этих продолжениях взяты соответственно точки D и E. Отрезки AE, ED и DC равны между собой, а  ∠BED ≠ ∠BDE.  Найдите угол ABE.

Прислать комментарий     Решение

Задача 111409

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

В равнобочной трапеции ABCD угол при основании AD равен α , боковая сторона AB равна b . Окружность, касающаяся сторон AB и AD и проходящая через вершину C , пересекает стороны BC и CD в точках M и N соответственно. Найдите BM , если = 3 .
Прислать комментарий     Решение


Задача 111411

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

В равнобочной трапеции ABCD угол при основании AD равен arcsin . Окружность радиуса R касается основания AD , боковой стороны AB и проходит через вершину C . Она отсекает на сторонах BC и CD отрезки MC и NC соответственно. Найдите BM .
Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 294]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .