ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа n записал xn1−x, а для каждого синего числа m записал xm1−x−1. После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от x. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]
Дан многочлен степени n⩾ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.
Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен (ax + b)1000 – (cx + d)1000 после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.
Дан многочлен степени n > 0 с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что у этого многочлена не может быть никаких других коэффициентов, кроме 1, -1 и -2.
Пусть 1 + x + x² + ... + xn–1 = F(x)G(x), где F и G – многочлены, коэффициенты которых – нули и единицы (n > 1).
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке