Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Таня сделала кошелёк из двух клетчатых кусочков ткани $8\times10$, наложив их друг на друга и сшив друг с другом края обеих пар коротких сторон и нижних длинных сторон (см. рисунок, слева сплющенный кошелёк, справа приоткрытый).

Хулиган Вася сделал прямолинейный надрез на переднем слое ткани от одного узла сетки до другого. Но Таня не расстроилась, потому что смогла сложить из надрезанного кошелька кулёк (в сплющенном виде это двуслойный треугольник, не обязательно равнобедренный, нескреплённые стороны совпадают — пример кулька в сплющенном и в приоткытом виде см. на рисунке ниже).

Отметьте на рисунке-кошельке два узла сетки, между которыми мог провести надрез Вася.

Вниз   Решение


Что больше:  1234567/7654321  или  1234568/7654322?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]      



Задача 35154

Темы:   [ Свойства коэффициентов многочлена ]
[ Вычисление производной ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что при умножении многочлена  (x + 1)n–1  на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.

Прислать комментарий     Решение

Задача 66883

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 4
Классы: 8,9,10,11

Автор: Ивлев Ф.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?
Прислать комментарий     Решение


Задача 97973

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

Прислать комментарий     Решение

Задача 109881

Темы:   [ Свойства коэффициентов многочлена ]
[ Производная и кратные корни ]
[ Многочлен n-й степени имеет не более n корней ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Прислать комментарий     Решение

Задача 110149

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Процессы и операции ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 10,11

Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .