Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение [x2]+px+q=0 при p0 иметь более 100 корней? ([x2] обозначает наибольшее целое число, не превосходящее x2.)

Вниз   Решение


За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 133]      



Задача 86125

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?
Прислать комментарий     Решение


Задача 64589

Темы:   [ Арифметическая прогрессия ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 10,11

Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.

Прислать комментарий     Решение

Задача 64820

Темы:   [ Арифметическая прогрессия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4-
Классы: 10,11

Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону?

Прислать комментарий     Решение

Задача 65460

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Жуков Г.

Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?

Прислать комментарий     Решение

Задача 78591

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 8,9,10

Доказать, что те натуральные K, для которых  KK + 1  делится на 30, образуют арифметическую прогрессию. Найти её.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .