|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Неориентированный граф называется четно-нечетным, если найдутся две его вершины, между которыми существует пути как из четного, так и из нечетного числа ребер. Напишите программу, которая: a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3 |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 242]
Продолжения равных хорд AB и CD окружности соответственно за
точки B и C пересекаются в точке P.
Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?
На диагонали AC квадрата ABCD взята точка M, причём AM = AB. Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что BH = HM = MC.
Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 242] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|