Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

От вершины C равнобедренного треугольника ABC с основанием AB, отложены равные отрезки: CA1 на стороне CA, и CB1 на стороне CB.
Докажите равенство треугольников:
  1) CAB1 и CBA1;
  2) ABB1 и BAA1.

Вниз   Решение


Докажите, что для остроугольного треугольника

$\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$.


ВверхВниз   Решение


Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 54641

Темы:   [ ГМТ - прямая или отрезок ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 2+
Классы: 8,9

Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?

Прислать комментарий     Решение


Задача 78585

Темы:   [ ГМТ - прямая или отрезок ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB).
Прислать комментарий     Решение


Задача 54003

Темы:   [ ГМТ - прямая или отрезок ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 2+
Классы: 8,9

Найдите геометрическое место центров окружностей, проходящих через две данные точки.

Прислать комментарий     Решение


Задача 53602

Темы:   [ ГМТ - прямая или отрезок ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Докажите, что прямые AB и KM перпендикулярны тогда и только тогда, когда  AK² – BK² = AM² – BM².

Прислать комментарий     Решение

Задача 57129

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

Два колеса радиусов r1 и r2 катаются по прямой l. Найдите множество точек пересечения M их общих внутренних касательных.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .