ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На олимпиаду пришло 2018 участников, некоторые из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то из них. Докажите, что можно рассадить всех участников олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".

Вниз   Решение


Автор: Бутырин Б.

В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]      



Задача 54235

Темы:   [ Площадь трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3-
Классы: 8,9

Проекция диагонали равнобедренной трапеции на её большее основание равна a, боковая сторона равна b. Найдите площадь трапеции, если угол при её меньшем основании равен 150o.

Прислать комментарий     Решение


Задача 54233

Темы:   [ Площадь трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54250

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Проекции оснований, сторон или вершин трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

В прямоугольной трапеции меньшая диагональ равна большей боковой стороне.
Найдите большую диагональ, если большая боковая сторона равна a, а меньшее основание равно b.

Прислать комментарий     Решение

Задача 111455

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

В равнобедренной трапеции ABCD основания AD и BC связаны равенством AD = (1+)BC . Построена окружность с центром в точке C радиуса BC , высекающая на основании AD хорду EF длины BC . В каком отношении окружность делит сторону CD ?
Прислать комментарий     Решение


Задача 111457

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Основания равнобочной трапеции относятся как 3:2. На большем основании как на диаметре построена окружность, высекающая на меньшем основании отрезок, равный половине этого основания. В каком отношении окружность делит боковые стороны трапеции?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .