ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) a + 1 делится на 3. Докажите, что 4 + 7a делится на 3. б) 2 + a и 35 – b делятся на 11. Докажите, что a + b делится на 11. Постройте многочлен R(x) из задачи 61019, если: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 123]
В государстве 100 городов, и из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?
В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей?
В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы было четыре телефона, каждый из которых соединен с тремя другими, восемь телефонов, каждый из которых соединен с шестью, и три телефона, каждый из которых соединен с пятью другими?
Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.
В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 123]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке