Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 181]
В правильном n-угольнике (n ≥ 3) отмечены середины
всех сторон и диагоналей.
Какое наибольшее число отмеченных точек лежит на одной окружности?
|
|
Сложность: 3+ Классы: 9,10,11
|
На плоскости отметили все вершины правильного n-угольника, а также его центр. Затем нарисовали контур этого n-угольника, и центр соединили со всеми вершинами; в итоге n-угольник разбился на n треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные).
В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких n по тройкам чисел, записанным в треугольниках, Петя всегда сможет
восстановить число в каждой отмеченной точке?
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.
|
|
Сложность: 3+ Классы: 10,11
|
Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность.
Что больше: сумма квадратов длин всех сторон пятиугольника или сумма квадратов длин всех сторон двадцатиугольника?
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов выбрать семь, сумма которых равна нулевому вектору?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 181]