ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число A, что в любом таком наборе чисел каждое из чисел не превышает A.

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 13]      



Задача 116837

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с углами ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 10,11

На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.

Прислать комментарий     Решение

Задача 97930

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Описанные четырехугольники ]
[ Выпуклые многоугольники ]
[ Сумма длин диагоналей четырехугольника ]
[ Неравенства с углами ]
Сложность: 3-
Классы: 8,9

Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

Прислать комментарий     Решение

Задача 109855

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .