ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В равнобедреной трапеции ABCD углы при основании AD равны
45o, диагональ AC является биссектрисой угла BAD.
Биссектриса угла BCD пересекает основание AD в точке K,
а отрезок BK пересекает диагональ AC в точке Q. Найдите
площадь треугольника ABQ, если площадь трапеции ABCD равна
3 + 2
|
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 352]
Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
Докажите, что при повороте окружность переходит в окружность.
На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.
На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что EF || AC и AF = AD. Докажите, что AВ = ВЕ.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке