ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

 Основания равнобедренной трапеции равны 6 и 12. Боковые стороны равны 5. Найдите синус острого угла трапеции.


Вниз   Решение


Графики функций  у = х² + ах + b  и  у = х² + сх + d  пересекаются в точке с координатами  (1, 1).  Сравните  а5 + d6  и  c6b5.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 58326

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Постройте образ точки A при инверсии относительно окружности S с центром O.
Прислать комментарий     Решение


Задача 58327

Темы:   [ Построение окружностей ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10

Постройте окружность, проходящую через две данные точки и касающуюся данной окружности (или прямой).
Прислать комментарий     Решение


Задача 116093

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся трёх данных попарно пересекающихся окружностей, проходящих через одну точку.
Прислать комментарий     Решение


Задача 116096

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
[ Инверсия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей и проходящую через данную точку, лежащую вне этих окружностей.
Прислать комментарий     Решение


Задача 58329

 [Задача Аполлония]
Темы:   [ Построение окружностей ]
[ Инверсия помогает решить задачу ]
Сложность: 6
Классы: 9,10

Постройте окружность, касающуюся трех данных окружностей (задача Аполлония).
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .