Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 233]
|
|
Сложность: 2+ Классы: 10,11
|
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
а) gk,l(x) = , где hm(x) = (1 – x)(1 – x²)...(1 – xm) (h0(x) = 1);
б) gk,l(x) = gl,k(x);
в) gk,l(x) = gk–1,l(x) + xkgk,l–1(x) = gk,l–1(x) + xlgk–1,l(x);
г) gk,l+1(x) = g0,l(x) + xg1,l(x) + ... + xkgk,l(x);
д) gk,l(x) – многочлен степени kl.
Многочлены gk,l(x) называются многочленами Гаусса. Их свойства во многом аналогичны свойствам биномиальных
коэффициентов. В частности, среди многочленов они играют ту же роль, что и биномиальные коэффициенты среди чисел.
[Лягушка-путешественница]
|
|
Сложность: 3- Классы: 9,10,11
|
Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?
|
|
Сложность: 3 Классы: 7,8,9
|
В последовательности цифр 1234096... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр.
Встретятся ли в этой последовательности подряд четыре цифры 8123?
[Числа Евклида]
|
|
Сложность: 3 Классы: 7,8,9
|
Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
e1 = 2, en = e1e2...en–1 + 1 (n ≥ 2). Все ли числа en являются простыми?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k
шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам m1 ≥ Fk+1, m0 ≥ Fk+2.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 233]