ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 201]      



Задача 66059

Темы:   [ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 6,7

Саша и Ваня родились 19 марта. Каждый из них отмечает свой день рождения тортом со свечками по количеству исполнившихся ему лет. В тот год, когда они познакомились, у Саши на торте было столько же свечек, сколько у Вани сегодня. Известно, что суммарное количество свечек на четырёх тортах Вани и Саши (тогда и сегодня) равно 216. Сколько лет исполнилось Ване сегодня?

Прислать комментарий     Решение

Задача 67189

Темы:   [ Модуль числа (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 9,10,11

Про четыре целых числа $a,b,c,d$ известно, что $$ a+b+c+d=ab+bc+cd+da+1. $$ Докажите, что модули каких-то двух из этих чисел отличаются на один.
Прислать комментарий     Решение


Задача 67300

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 7,8,9,10,11

Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?
Прислать комментарий     Решение


Задача 77961

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 3
Классы: 9,10,11

Решить систему уравнений:   x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1.

Прислать комментарий     Решение

Задача 79294

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Найти все действительные решения уравнения с четырьмя неизвестными:   x² + y² + z² + t² = x(y + z + t).

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .