Страница: 1
2 3 4 >> [Всего задач: 16]
|
|
Сложность: 2+ Классы: 8,9,10
|
Решите уравнение: x(x + 1) = 2014·2015.
|
|
Сложность: 3+ Классы: 8,9,10
|
Один из корней уравнения x² + ax + b = 0 равен 1 + . Найдите a и b, если известно, что они рациональны.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?
|
|
Сложность: 4- Классы: 9,10,11
|
Дано число A = , где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что
A = .
|
|
Сложность: 4- Классы: 8,9,10
|
Дано число A = , где n и m –
натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что A = .
Страница: 1
2 3 4 >> [Всего задач: 16]