Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 147]      



Задача 67309

Темы:   [ Оценка + пример ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9,10,11

На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?
Прислать комментарий     Решение


Задача 67277

Темы:   [ Оценка + пример ]
[ Планарные графы. Формула Эйлера ]
[ Теория графов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Автор: Закорко П.

У Карабаса-Барабаса есть большой участок земли в форме выпуклого $12$-угольника, в вершинах которого стоят фонари. Карабасу-Барабасу нужно поставить внутри участка некоторое конечное число фонарей, разделить его на треугольные участки с вершинами в фонарях и раздать эти участки актёрам театра. При этом каждый внутренний фонарь должен освещать не менее шести треугольных участков (фонарь светит недалеко, только на те участки, в вершине которых стоит). Какое максимальное количество треугольных участков может раздать Карабас-Барабас актёрам?
Прислать комментарий     Решение


Задача 67409

Темы:   [ Оценка + пример ]
[ Площадь (прочее) ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5
Классы: 8,9,10,11

Пекарь испёк прямоугольный лаваш и разрезал его на $n^2$ прямоугольников, сделав $n–1$ горизонтальных разрезов и $n–1$ вертикальных. Оказалось, что округлённые до целого числа площади получившихся прямоугольников равны всем натуральным числам от $1$ до $n^2$ в некотором порядке. Для какого наибольшего $n$ это могло произойти? (Полуцелые числа округляются вверх.)
Прислать комментарий     Решение


Задача 67441

Темы:   [ Оценка + пример ]
[ Геометрия на клетчатой бумаге ]
[ Теория алгоритмов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

У Вани есть клетчатая бумага двух видов: белая и чёрная. Он вырезает кусок из любой бумаги и наклеивает на серую клетчатую доску $45\times 45$, делая так много раз. Какое минимальное число кусков нужно наклеить, чтобы «раскрасить» клетки доски в шахматном порядке? (Каждый кусок – набор клеток, в котором от любой клетки до любой другой можно пройти, переходя из клетки в соседнюю через их общую сторону. Можно наклеивать куски один поверх другого. Все клетки имеют размер $1\times 1$.)
Прислать комментарий     Решение


Задача 35245

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 2
Классы: 7,8,9

В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .