ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 603]      



Задача 53392

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

Прислать комментарий     Решение

Задача 53401

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка.

Прислать комментарий     Решение

Задача 53405

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что  AO = BO.

Прислать комментарий     Решение

Задача 53432

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, проходящая через середины боковых сторон равнобедренного треугольника, параллельна основанию.

Прислать комментарий     Решение

Задача 53446

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию. Верно ли обратное?

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .