Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 223]
|
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2001 город, некоторые пары городов соединены дорогами, причём из
каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на 2001 – k республик так, что никакие два города из одной республики не будут соединены дорогой.
|
|
|
Сложность: 5- Классы: 8,9,10
|
Найдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n.
|
|
|
Сложность: 5 Классы: 7,8,9
|
Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число
a > 1, а далее под каждым
числом k слева пишем число
k2 , а
справа — число
k + 1. Докажите, что в каждой строке таблицы все числа разные.
Например, при a = 2 вторая строка состоит из чисел 4 и 3, третья — из чисел 16, 5, 9 и 4, четвёртая — из чисел 256, 17, 25, 6, 81, 10, 16 и 5.
|
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите все такие натуральные числа n, что для любых двух его взаимно
простых делителей a и b число a + b – 1 также является делителем n.
|
|
|
Сложность: 5 Классы: 9,10,11
|
Даны многочлены P(x), Q(x). Известно, что
для некоторого многочлена R(x, y) выполняется равенство
P(x) – P(y) = R(x, y)(Q(x) – Q(y)).
Докажите, что существует такой многочлен S(x), что P(x) = S(Q(x)).
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 223]