Страница: 1
2 3 4 5 6 7 >> [Всего задач: 1547]
Докажите, что при параллельном переносе окружность переходит в окружность.
Две окружности радиуса
R касаются в точке
K. На
одной из них взята точка
A, на другой — точка
B, причем
AKB = 90
o. Докажите, что
AB = 2
R.
Две окружности радиуса
R пересекаются в точках
M и
N.
Пусть
A и
B — точки пересечения серединного перпендикуляра
к отрезку
MN с этими окружностями, лежащие по одну
сторону от прямой
MN. Докажите, что
MN2 +
AB2 = 4
R2.
Внутри прямоугольника
ABCD взята точка
M. Докажите, что
существует выпуклый четырехугольник с перпендикулярными диагоналями
длины
AB и
BC, стороны которого равны
AM,
BM,
CM,
DM.
Докажите, что при центральной симметрии окружность переходит в окружность.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 1547]