ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 [Всего задач: 96]      



Задача 107844

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Геометрические неравенства (прочее) ]
[ Параллельный перенос (прочее) ]
Сложность: 5+
Классы: 9,10,11

На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .