ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 86509

Темы:   [ Подобные фигуры ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 8,9

Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

Прислать комментарий     Решение

Задача 56517

Тема:   [ Подобные фигуры ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Постройте две прямые x и y так, чтобы для любой точки M на стороне AC сумма длин отрезков MXM и MYM, проведенных из точки M параллельно прямым x и y до пересечения со сторонами AB и BC треугольника, равнялась 1.
Прислать комментарий     Решение


Задача 56518

Тема:   [ Подобные фигуры ]
Сложность: 3
Классы: 9

В равнобедренном треугольнике ABC из середины H основания BC опущен перпендикуляр HE на боковую сторону AC; O — середина отрезка HE. Докажите, что прямые AO и BE перпендикулярны.
Прислать комментарий     Решение


Задача 108501

Темы:   [ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренной трапеции с основаниями 1 и 4 расположены две окружности, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 108502

Темы:   [ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренной трапеции с основаниями 1 и 9 расположены две окружности, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .