ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 57567

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 4+
Классы: 8,9

Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.
Прислать комментарий     Решение


Задача 57566

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 6
Классы: 8,9

а) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьший периметр имеет правильный n-угольник.
Прислать комментарий     Решение


Задача 57568

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 6+
Классы: 8,9

а) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольший периметр имеет правильный n-угольник.
Прислать комментарий     Решение


Задача 57082

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Векторы помогают решить задачу ]
[ Экстремальные свойства правильных многоугольников ]
Сложность: 4
Классы: 9,10

Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .