ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 199]      



Задача 60916

Темы:   [ Ним-сумма ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

Марсианские амебы II. При помощи ним-сумм (смотри задачу 5.76) можно исследовать самые разные игры и процессы. Например, можно получить еще одно решение задачи 4.20.
Постройте на множестве марсианских амеб {ABC} функцию f, для которой выполнялись бы равенства

f (A) $\displaystyle \oplus$ f (B) = f (C),    f (A) $\displaystyle \oplus$ f (C) = f (B),    f (B) $\displaystyle \oplus$ f (C) = f (A).

Какие рассуждения остается провести, чтобы решить задачу про амеб?

Прислать комментарий     Решение

Задача 64192

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

На доске было написано уравнение вида  x² + px + q = 0  с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?

Прислать комментарий     Решение

Задача 67265

Темы:   [ Раскраски ]
[ Инварианты ]
Сложность: 4
Классы: 7,8,9

На клетчатой доске 10×10 в одной из клеток сидит бактерия. За один ход бактерия сдвигается в соседнюю по стороне клетку и делится на две бактерии (обе остаются в той же клетке). Затем снова одна из сидящих на доске бактерий сдвигается в соседнюю по стороне клетку и делится на две, и так далее. Может ли после нескольких таких ходов во всех клетках оказаться поровну бактерий?
Прислать комментарий     Решение


Задача 67286

Темы:   [ Доказательство от противного ]
[ Инварианты ]
Сложность: 4
Классы: 6,7,8

Автор: Русских И.

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?
Прислать комментарий     Решение


Задача 104068

Темы:   [ Целочисленные решетки (прочее) ]
[ Инварианты ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4
Классы: 6,7,8

Петя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .