Страница:
<< 217 218 219 220
221 222 223 >> [Всего задач: 1308]
|
|
Сложность: 4- Классы: 10,11
|
Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже
побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)
|
|
Сложность: 4 Классы: 7,8,9
|
На какое целое число надо умножить
999 999 999, чтобы получить
число, состоящее из одних единиц?
|
|
Сложность: 4 Классы: 7,8,9
|
11 пионеров занимаются в пяти кружках дома культуры.
Докажите, что найдутся два пионера А и В такие, что все кружки,
которые посещает А, посещает и В.
Какое наименьшее число гирь необходимо для того,
чтобы иметь возможность взвесить любое число граммов от 1 до 100
на чашечных весах, если гири можно класть только на одну чашку
весов?
В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций:
1) в любом месте слова комбинацию букв АБА можно заменить на БАБ;
2) из любого места можно выкидывать две одинаковые буквы, идущие подряд.
а) Может ли дикарь племени сосчитать все пальцы на своей руке?
б) А дни недели?
Страница:
<< 217 218 219 220
221 222 223 >> [Всего задач: 1308]