Страница:
<< 126 127 128 129
130 131 132 >> [Всего задач: 1308]
|
|
Сложность: 4- Классы: 7,8,9
|
Рассматривается набор гирь, каждая из которых весит целое число граммов, а
общий вес всех гирь равен 500 граммов. Такой набор называется правильным, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 500, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом
(тело кладётся на одну чашку весов, гири – на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).
а) Приведите пример правильного набора, в котором не все гири по одному грамму.
б) Сколько существует различных правильных наборов?
(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)
|
|
Сложность: 4- Классы: 8,9,10
|
В каждой целой точке числовой оси расположена лампочка с кнопкой, при
нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.
|
|
Сложность: 4- Классы: 8,9,10
|
Играют двое, ходят по очереди. Первый ставит на плоскости красную точку,
второй в ответ ставит на свободные места 10 синих точек. Затем опять первый
ставит на свободное место красную точку, второй ставит на свободные места 10
синих, и т.д. Первый считается выигравшим, если какие-то три красные точки
образуют правильный треугольник. Может ли второй ему помешать?
|
|
Сложность: 4- Классы: 8,9,10
|
а) На доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После семи таких операций на доске будет только одно число. Может ли оно равняться 97?
б) На доске выписаны числа 1, 21, 2², 2³, ..., 210. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После нескольких таких операций на доске будет только одно число. Чему оно может быть равно?
|
|
Сложность: 4- Классы: 8,9,10
|
Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?
Страница:
<< 126 127 128 129
130 131 132 >> [Всего задач: 1308]