ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 120]      



Задача 64848

Темы:   [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Прислать комментарий     Решение

Задача 64961

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?

Прислать комментарий     Решение

Задача 65089

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Прислать комментарий     Решение

Задача 66012

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?

Прислать комментарий     Решение

Задача 66018

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 120]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .