Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 74]
|
|
Сложность: 4 Классы: 10,11
|
Дана треугольная пирамида
ABCD . Точка
F взята на ребре
AD , а
точка
N взята на ребре
BD , причём
DN:NB = 1
:2
. Через точки
F ,
N и точку пересечения медиан треугольника
ABC проведена плоскость,
параллельная плоскости
ADB и пересекающая рёбра
CA и
CD в точках
L и
K соответственно. Известно, что
CH:HB = (
AF:FD)
2
и что
радиус шара, вписанного в пирамиду
CHLK , равен
R . Найдите отношение
площади треугольника
ABC к сумме площадей всех граней пирамиды
ABCD , если перпендикуляр, опущенный из вершины
D на плоскость
ABC , равен
h .
|
|
Сложность: 4 Классы: 10,11
|
Дана треугольная пирамида
ABCD . На ребре
AC взята точка
F ,
причём
CF:FA = 2
:9
, на ребре
CD взята точка
M , причём
AM –
биссектриса угла
DAC . Через точки
F ,
M и точку пересечения медиан
треугольника
DAB проведена плоскость, пересекающая ребро
DB в точке
N . Известно, что
CA:AD = DN:NB + 1
. Известно также, что отношение
площади треугольника
ADB к сумме площадей всех граней пирамиды
ABCD
равно
p , а перпендикуляр, опущенный из вершины
C на плоскость
ABD ,
равен
h . Через точку
N проведена плоскость, параллельная плоскости
ACB и пересекающая рёбра
CD и
DA в точках
K и
L соответственно.
Найдите радиус шара, вписанного в пирамиду
DKLN .
|
|
Сложность: 4 Классы: 10,11
|
Дана треугольная пирамида
ABCD . Точка
F взята на ребре
AD , а
точка
N взята на ребре
DB , причём
DN:NB = 1
:2
. Через точки
F ,
N и точку пересечения медиан треугольника
ABC проведена плоскость,
пересекающая ребро
CB в точке
H . Через точку
H проведена плоскость,
параллельная плоскости
ADB и пересекающая рёбра
CA и
CD в точках
L и
K соответственно. Известно, что
CH:HB = (
AF:FD)
2
и что
радиус шара, вписанного в пирамиду
CHLK , равен
R . Найдите отношение
площади треугольника
ABC к сумме площадей всех граней пирамиды
ABCD , если перпендикуляр, опущенный из вершины
D на плоскость
ABC ,
равен
h .
|
|
Сложность: 4 Классы: 10,11
|
В правильную четырёхугольную пирамиду
SABCD (
S – вершина) вписана
сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4.
Точка
E выбрана на ребре
SC , причём
SE=SC , а точка
F
является ортогональной проекцией точки
E на плоскость
ABCD . Через
точку
E проведена касательная к сфере, пересекающая плоскость
BSD в
точке
P , причём
PEF = arccos . Найдите
PE .
|
|
Сложность: 4 Классы: 10,11
|
В правильную четырёхугольную пирамиду
SABCD (
S – вершина) вписана
сфера. Сторона основания пирамиды равна 8, а высота пирамиды равна 3.
Точка
M – середина ребра
SD , а точка
K является ортогональной
проекцией точки
M на плоскость
ABCD . Через точку
M проведена
касательная к сфере, пересекающая плоскость
ASC в точке
N , причём
NMK = arccos (
-)
. Найдите
NM .
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 74]