ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Вниз   Решение


Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

ВверхВниз   Решение


ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C,  ∠ADC = 150°.  Найдите ∠B.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 506]      



Задача 60371

Темы:   [ Перестановки и подстановки (прочее) ]
[ Произведения и факториалы ]
Сложность: 2
Классы: 8,9

Количество перестановок множества из n элементов обозначается Pn. Докажите равенство  Pn = n!.

Прислать комментарий     Решение

Задача 60381

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 2
Классы: 7,8

На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Прислать комментарий     Решение

Задача 61419

Темы:   [ Раскладки и разбиения ]
[ Перебор случаев ]
Сложность: 2
Классы: 8,9,10

Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

Прислать комментарий     Решение

Задача 88193

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 5,6,7,8

В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?

Прислать комментарий     Решение

Задача 103818

Темы:   [ Классическая комбинаторика (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 6,7

Каких прямоугольников с целыми сторонами больше: с периметром 1996 или с периметром 1998?
(Прямоугольники a×b и b×a считаются одинаковыми.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 506]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .