Страница:
<< 1 2
3 >> [Всего задач: 12]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд записаны $n > 2$ различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей?
|
|
Сложность: 4 Классы: 8,9,10
|
Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую)
хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.
Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось
произведению двух соседних.
|
|
Сложность: 3 Классы: 7,8,9
|
Сравните
и
.
Страница:
<< 1 2
3 >> [Всего задач: 12]