Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 153]
|
|
|
Сложность: 4- Классы: 7,8,9,10
|
На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют
фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она
перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим
считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)
|
|
|
Сложность: 4- Классы: 10,11
|
Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник.
Докажите, что длина одной из сторон этого пятиугольника отличается от 1 метра по крайней мере на 20 сантиметров.
|
|
|
Сложность: 4 Классы: 10,11
|
Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
а) равными наибольшими сторонами?
б) равными наименьшими сторонами?
|
|
|
Сложность: 4 Классы: 8,9,10
|
В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина
которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из
сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
|
[Неравенство Птолемея]
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан четырёхугольник ABCD. Докажите, что AC·BD ≤ AB·CD + BC·AD.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 153]