Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 75]
|
|
Сложность: 4- Классы: 8,9,10,11
|
На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников.
|
|
Сложность: 4 Классы: 8,9,10
|
Обёрткой плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Например, прямоугольник 2×1 и квадрат со стороной – обёртки.
а) Докажите, что есть и другие обёртки.
б) Докажите, что обёрток бесконечно много.
|
|
Сложность: 4+ Классы: 7,8,9,10
|
На плоскости расположено
[
n]
прямоугольников со
сторонами, параллельными осям координат. Известно, что любой прямоугольник
пересекается хотя бы с
n прямоугольниками. Доказать, что найдется
прямоугольник, пересекающийся со всеми прямоугольниками.
|
|
Сложность: 5- Классы: 7,8,9
|
а) Из картона вырезали 7 выпуклых многоугольников и
положили на стол так, что любые 6 из них можно прибить к столу двумя
гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их
расположения. (Многоугольники могут перекрываться.)
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол
так, что любые 7 из них можно прибить к столу двумя гвоздями, а
все 8 — нельзя. Приведите пример таких многоугольников и их
расположения. (Многоугольники могут перекрываться.)
Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 75]