ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 324]      



Задача 109512

Темы:   [ Процессы и операции ]
[ Перестановки и подстановки (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.

Прислать комментарий     Решение

Задача 109576

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

Прислать комментарий     Решение

Задача 109673

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 7,8,9,10

На множестве действительных чисел задана операция * , которая каждым двум числам a и b ставит в соответствие число a*b . Известно, что равенство (a*b)*c=a+b+c выполняется для любых трех чисел a , b и c . Докажите, что a*b=a+b .
Прислать комментарий     Решение


Задача 109680

Темы:   [ Процессы и операции ]
[ Задачи на движение ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 7,8,9

На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Прислать комментарий     Решение

Задача 109930

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9,10

На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 324]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .