ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 324]      



Задача 110012

Темы:   [ Процессы и операции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Антонов М.

Лабиринт представляет собой квадрат 8×8, в каждой клетке 1×1 которого нарисована одна из четырёх стрелок (вверх, вниз, вправо, влево). Верхняя сторона правой верхней клетки – выход из лабиринта. В левой нижней клетке находится фишка, которая каждым своим ходом перемещается на одну клетку в направлении, указанном стрелкой. После каждого хода стрелка в клетке, в которой только что была фишка, поворачивается на 90° по часовой стрелке. Если фишка должна сделать ход, выводящий ее за пределы квадрата 8×8, она остается на месте, а стрелка также поворачивается на 90° по часовой стрелке. Докажите, что рано или поздно фишка выйдет из лабиринта.

Прислать комментарий     Решение

Задача 110110

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 7,8,9

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?
Прислать комментарий     Решение


Задача 111349

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите  а) наименьшее такое число,  б) все такие числа.

Прислать комментарий     Решение

Задача 111846

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Автор: Петров Ф.

В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в каждых двух соседних вершинах были различными.

Прислать комментарий     Решение

Задача 111883

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 4
Классы: 8,9,10

Автор: Храбров А.

На доске написано натуральное число. Если на доске написано число x, то можно дописать на нее число  2x + 1  или x/x+2. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 324]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .