Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

Вниз   Решение


Автор: Назаров Ф.

Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)

ВверхВниз   Решение


По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



Задача 111537

Темы:   [ Средняя линия трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Высота равнобедренной трапеции ABCD с основаниями AD и BC равна 4 , диагонали трапеции пересекаются в точке O , AOD = 120o . Найдите среднюю линию трапеции.
Прислать комментарий     Решение


Задача 111548

Темы:   [ Средняя линия трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции.
Прислать комментарий     Решение


Задача 54311

Темы:   [ Средняя линия трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.

Прислать комментарий     Решение


Задача 53497

Темы:   [ Средняя линия трапеции ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Основания трапеции равны a и b  (a > b).  Найдите длину отрезка, соединяющего середины диагоналей трапеции.

Прислать комментарий     Решение

Задача 53526

Темы:   [ Средняя линия трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

Найдите отношение оснований трапеции, если известно, что её средняя линия делится диагоналями на три равные части.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .