Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]
|
|
Сложность: 8+ Классы: 10,11
|
Двое играют в такую игру. Один задумывает натуральное
число n, а другой задаёт вопросы типа «верно ли, что
n не
меньше x» (число x он может выбирать по своему усмотрению) и получает ответы «да» или «нет». Каждой возможной
стратегии T второго игрока сопоставим функцию
fT(
n), равную числу вопросов (до отгадывания), если было задумано
число n. Пусть, например,
стратегия T состоит в том, что сначала задают вопросы: «верно ли, что
n не меньше 10?», «верно ли, что
n не меньше 20?», ... до тех пор, пока на какой-то вопрос «верно ли, что
n не меньше 10(
k + 1)» не будет дан ответ «нет», а затем задают вопросы «верно ли, что
n не меньше
10k + 1», «верно ли, что
n не меньше
10k + 2» и так далее. Тогда
fT(n) = a + 2 + (n – a)/10, где
a — последняя цифра
числа n, то есть
fT(
n) растёт примерно
как n/10.
а) Предложите стратегию, для которой функция fT растёт медленнее.
б) Сравнивая две стратегии, удобно для произвольной стратегии Т вместо функции fT ввести функцию fT, значение которой для любого натурального числа n равно наибольшему из чисел fT(k), где k пробегает значения от 1 до n. Оцените снизу fT для произвольной стратегии T.
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность неограничена.
|
|
Сложность: 6- Классы: 8,9,10
|
Дан квадрат со
стороной 1. От него отсекают четыре
уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]