Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1007]
|
|
Сложность: 5 Классы: 9,10,11
|
В таблице N×N, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном
элементе).
Докажите, что из таблицы можно вычеркнуть некоторый столбец так, что в оставшейся таблице опять все строки будут различны.
|
|
Сложность: 5 Классы: 9,10,11
|
Для каждого натурального n обозначим через P(n) число разбиений n в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например, P(4) = 5, потому что 4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 – пять способов).
а) Количество различных чисел в данном разбиении назовем его разбросом (например, разбиение 4 = 1 + 1 + 2 имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма Q(n) разбросов всех разбиений числа n равна 1 + P(1) + P(2) + ... + P(n–1).
б) Докажите, что
|
|
Сложность: 5 Классы: 8,9,10
|
В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.
|
|
Сложность: 5 Классы: 8,9,10
|
В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?
|
|
Сложность: 5 Классы: 8,9,10
|
Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется хорошей, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?
Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1007]