Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1006]
|
|
Сложность: 5+ Классы: 9,10,11
|
Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.
Найдите расстановку чисел, при которой полученная сумма наибольшая.
|
|
Сложность: 5+ Классы: 9,10,11
|
Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
а) Какие коробки следует купить при n = 10 и k = 3 ?
б) Тот же вопрос для произвольных натуральных n ≥ k.
|
|
Сложность: 5+ Классы: 9,10,11
|
Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется положительным, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и отрицательным в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.
|
|
Сложность: 5+ Классы: 8,9,10
|
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1006]