ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 149]
Докажите, что для действительного положительного α и натурального d всегда выполнено равенство [α/d] = [[α]/d].
Сколько рациональных слагаемых содержится в разложении а) ( б) (
На часах три стрелки, каждая вращается в ту же сторону, что и обычно, с постоянной ненулевой, но, возможно, неправильной скоростью. Утром длинная и короткая стрелки совпали. Ровно через $3$ часа совпали длинная и средняя стрелки. Еще ровно через $4$ часа совпали короткая и средняя стрелки. Обязательно ли когда-нибудь совпадут все три стрелки?
Доказать, что если несократимая рациональная дробь p/q является корнем многочлена P(x) с целыми коэффициентами, то P(x) = (qx – p)Q(x), где многочлен Q(x) также имеет целые коэффициенты.
Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 149]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке