ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 205]      



Задача 115391

Темы:   [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10,11

В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по одной монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить "облегчённый" кошелёк?

Прислать комментарий     Решение

Задача 109998

Темы:   [ Индукция (прочее) ]
[ Математическая логика (прочее) ]
[ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
Прислать комментарий     Решение


Задача 109724

Темы:   [ НОД и НОК. Взаимная простота ]
[ Математическая логика (прочее) ]
[ Деление с остатком ]
Сложность: 4+
Классы: 8,9,10

Таня задумала натуральное число  X ≤ 100,  а Саша пытается его угадать. Он выбирает пару натуральных чисел M и N, меньших 100, и задаёт вопрос: "Чему равен наибольший общий делитель  X + M  и N?" Докажите, что Саша может угадать Танино число, задав семь таких вопросов.

Прислать комментарий     Решение

Задача 109749

Темы:   [ Перебор случаев ]
[ Математическая логика (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 7,8,9

Автор: Лифшиц Ю.

Юра выложил в ряд 2001 монету достоинством 1, 2 и 3 копейки. Оказалось, что между любыми двумя копеечными монетами лежит хотя бы одна монета, между любыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между любыми двумя трехкопеечными монетами лежат хотя бы три монеты. Сколько у Юры могло быть трехкопеечных монет?
Прислать комментарий     Решение


Задача 105155

Темы:   [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 5
Классы: 8,9,10

В тюрьму поместили 100 узников. Надзиратель сказал им:
"Я дам вам вечер поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Иногда я буду одного из вас отводить в комнату, в которой есть лампа (вначале она выключена). Уходя из комнаты, вы можете оставить лампу как включенной, так и выключенной.

Если в какой-то момент кто-то из вас скажет мне, что вы все уже побывали в комнате, и будет прав, то я всех вас выпущу на свободу. А если неправ - скормлю всех крокодилам. И не волнуйтесь, что кого-нибудь забудут - если будете молчать, то все побываете в комнате, и ни для кого никакое посещение комнаты не станет последним."

Придумайте стратегию, гарантирующую узникам освобождение.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 205]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .