ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 501]      



Задача 79545

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8

В тёмной комнате на полке в беспорядке лежат четыре пары носков двух разных размеров и двух разных цветов. Какое наименьшее число носков необходимо, не выходя из комнаты, переложить с полки в чемодан, чтобы в нем оказались две пары различного размера и цвета?

Прислать комментарий     Решение

Задача 111241

Тема:   [ Задачи с ограничениями ]
Сложность: 3
Классы: 6,7,8

Новогодняя гирлянда, висящая вдоль школьного коридора, состоит из красных и синих лампочек. Рядом с каждой красной лампочкой обязательно есть синяя. Какое наибольшее количество красных лампочек может быть в этой гирлянде, если всего лампочек 50?

Прислать комментарий     Решение

Задача 60345

Темы:   [ Правило произведения ]
[ Формула включения-исключения ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру?

Прислать комментарий     Решение

Задача 31377

Темы:   [ Правило произведения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8,9

Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

Прислать комментарий     Решение

Задача 35296

Темы:   [ Классическая комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

В сериале "Тайна Санта-Барбары" участвует 20 героев. Каждую серию происходит одно из событий: некоторый герой узнаёт Тайну, некоторый герой узнаёт, что кто-то знает Тайну, некоторый герой узнаёт, что кто-то не знает Тайну. Какое наибольшее число серий может продолжаться сериал?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .