Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 119]
|
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
На совместный симпозиум лжецов (всегда лгут) и правдолюбов (всегда говорят правду) собрались 12 участников, среди которых не все лжецы и не все правдолюбы. Каждые два участника либо знакомы, либо незнакомы друг с другом. Каждый ответил «да» или «нет» на вопрос «Знакомы ли вы?» про каждого из остальных. Какое наименьшее количество ответов «да» могло быть получено?
|
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
На совместный симпозиум лжецов (всегда лгут) и правдолюбов (всегда говорят правду) собрались 100 участников, среди которых не все лжецы и не все правдолюбы. Каждые два участника либо знакомы, либо незнакомы друг с другом. Каждый ответил «да» или «нет» на вопрос «Знакомы ли вы?» про каждого из остальных. Какое наименьшее
количество ответов «да» могло быть получено?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Обозначим корни уравнения x² + px + q = 0 через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек M(, q),
которые задаются условиями:
а) x1 = 0, x2 = 1; б) x1 ≤ 0, x2 ≥ 2;
в) x1 = x2;
г) – 1 ≤ x1 ≤ 0, 1 ≤ x2 ≤ 2.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
a sin x + b cos x + c = 0, 2a tg x + b ctg x + 2c = 0
имеет решение.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных
целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 119]