ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 60944

Тема:   [ Фазовая плоскость коэффициентов ]
Сложность: 3
Классы: 8,9,10

Каким точкам фазовой плоскости соответствуют квадратные трёхчлены, не имеющие корней?

Прислать комментарий     Решение

Задача 60945

Темы:   [ Фазовая плоскость коэффициентов ]
[ Кривые второго порядка ]
Сложность: 3+
Классы: 8,9,10

Для каждого действительного a построим на плоскости Opq корневую прямую  a² + ap + q = 0.
Докажите, что полученное множество прямых совпадает с множеством всех касательных к дискриминантной параболе  p² – 4q = 0.

Прислать комментарий     Решение

Задача 60950

Тема:   [ Фазовая плоскость коэффициентов ]
Сложность: 3+
Классы: 9,10

На фазовой плоскости через точку  (p, q)  проведены касательные к дискриминантной параболе  p² – 4q = 0.
Найдите координаты точек касания.

Прислать комментарий     Решение

Задача 60946

Темы:   [ Фазовая плоскость коэффициентов ]
[ Квадратные уравнения. Теорема Виета ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Обозначим корни уравнения  x² + px + q = 0  через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек  M(, q),  которые задаются условиями:
а)  x1 = 0,  x2 = 1;     б)  x1 ≤ 0,  x2 ≥ 2;     в)  x1 = x2;     г)  – 1 ≤ x1 ≤ 0,  1 ≤ x2 ≤ 2.

Прислать комментарий     Решение

Задача 60949

Темы:   [ Фазовая плоскость коэффициентов ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Фазовая плоскость Opq разбивается параболой  p² – 4q = 0  и прямыми  p + q + 1 = 0,  – 2p + q + 4 = 0  на несколько областей. Для точек каждой области укажите, сколько корней имеет соответствующий им многочлен  x² + px + q = 0  на интервале  (– 2, 1).

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .