Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 117]
|
|
Сложность: 4 Классы: 8,9,10
|
Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения f(g(x)) = 0 и g(f(x)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений f(f(x)) = 0 и g(g(x)) = 0 тоже не имеет вещественных корней.
|
|
Сложность: 4+ Классы: 9,10,11
|
Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные.
|
|
Сложность: 5- Классы: 8,9,10
|
Положительные числа х1, ..., хk удовлетворяют неравенствам
а) Докажите, что k > 50.
б) Построить пример таких чисел для какого-нибудь k.
в) Найти минимальное k, для которого пример возможен.
|
|
Сложность: 5- Классы: 8,9,10
|
Два многочлена P(x) = x4 + ax³ + bx² + cx + d и Q(x) = x² + px + q принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что P(x0) < Q(x0).
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что
bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 117]