|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан отрезок AB. Найдите на плоскости множество таких точек C, что медиана треугольника ABC, проведённая из вершины A, равна высоте, проведённой из вершины B.
Найдите значение выражения log Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника? а) Докажите, что в трилинейных координатах описанная коника (т.е. коника, проходящая через все вершины треугольника) задаётся уравнением вида
pxy + qxz + rzy = 0.
б) Докажите, что в трилинейных координатах коника, касающаяся всех сторон треугольника или их продолжений, задаётся уравнением вида
px2 + qy2 + rz2 = 2(±
|
Страница: 1 [Всего задач: 3]
Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0 где A1, A2 – вещественные числа.
| xn + 1 - xn|
Положительные числа х1, ..., хk удовлетворяют неравенствам
Страница: 1 [Всего задач: 3] |
|||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|